Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Question	Answer	Marks
1(a)	lines drawn from Enzymes to are biological catalysts ; are usually not active at low temperatures ; are protein molecules ;	$\mathbf{3}$
1(b)	large / insoluble / food molecules are broken down ; into small/ soluble molecules / so they can be absorbed ;	$\mathbf{2}$
1(c)	glycogen ; starch ;	$\mathbf{2}$
1(d)(i)	Benedict's (test) ; red colour produced ;	$\mathbf{2}$
1(d)(ii)	no reaction ; because enzymes become inactive at high temperatures ;	$\mathbf{2}$
1(e)	chlorophyll ; light ;	$\mathbf{2}$

Question	Answer	Marks
2(a)(i)	potassium / K lithium / Li sodium / Na ;;	2
2(a)(ii)	hydrogen/ H_{2};	1
2(a)(iii)	turns blue and stays blue / no change ;	1
2(b)(i)	magnesium/Mg ;	1
2(b)(ii)	copper/ Cu ;	1
2(b)(iii)	(too) dangerous / (risk of) explosion ;	1
2(c)(i)	resists corrosion / does not rust ;	1
2(c)(ii)	stronger/does not get damaged ;	1

Question	Answer		Marks
3(a)(i)			2
	name of force	letter on Fig. 1.1	
	driving force	A	
	frictional force	C	
	lifting force	B	
	weight	D	
	one mark for each two correct ;;		
3(a)(ii)	(Force B is 500000 N) no mark constant height; forces (\mathbf{B} and \mathbf{D}) are balanced ;		1
3(a)(iii)	1. A/driving force ; 2. $\mathbf{B} /$ lifting force ;		2
3(b)(i)	$600 \mathrm{~km} / \mathrm{h}=600000 / 3600 \mathrm{~m} / \mathrm{s}=167 \mathrm{~m} / \mathrm{s}$;		1
3(b)(ii)	time $(=$ distance $/$ speed $)=2700 / 600=4.5 \mathrm{~h}$		1
3(c)	loss of kinetic energy ; loss of (gravitational) potential energy ;		2
3(d)	any variation on this shape that goes from the origin to a maximum and returns to speed $=0$; horizontal section at constant maximum speed ;		2

Question	Answer	Marks
4(a)(i)	A closes and B opens ;	
4(a)(ii)	to prevent backflow of blood ;	$\mathbf{1}$
4(b)(i)	any suitable flight or fight situation described ;	$\mathbf{1}$
4(b)(ii)	destroyed by the liver ;	$\mathbf{1}$
4(c)	transport of oxygen / haemoglobin ; transport of blood cells / ions / soluble nutrients / named soluble nutrient / hormones / carbon dioxide ;	$\mathbf{2}$

Question	Answer	Marks
5(a)(i)	Fractional distillation ;	1
5(a)(ii)	no new substance made / involves only changes of state ;	1
5(a)(iii)	cooking / heating allow bottling / bottled gas ;	1
5(b)(i)	methane ;	1
5(b)(ii)	(atoms) five $/ 5$ (elements) two $/ 2 ;$	1
5(b)(iii)	C atom joined to 4 H atoms by single bonds ; allow correct dot-and-cross diagrams	1
5(c)	coal ;	1

Question		Answer	Marks
7(a)(i)	for respiration ;		1
7(a)(ii)	diffusion ;		1
7(a)(iii)	from the (water) plants ;		1
7(b)(i)	food web completed as shown ; arrows in the correct direction ;		2
7(b)(ii)	small animals ; water plants / algae ;		2

Question			Answer		Marks
8(a)(i)	filtration ;				1
8(a)(ii)	kill microbes / sterilise (water) ;				1
8(a)(iii)	(damp)-litmus (paper) ; turns white / bleached ;				2
8(b)(i)	chlorine hydrogen LHS either order	\rightarrow	hydrogen chloride		1
8(b)(ii)	covalent ; share (pair of) electrons ;				2
8(b)(iii)	HCl ;				1
8(c)(i)	anode ;				1
8(c)(ii)	copper ;				1
8(c)(iii)	copper chloride solution / aqueous copper chloride ;				1

Question	Answer	Marks
$9(\mathrm{a})$	correct symbols for ammeter and lamp ; correct symbol for variable resistor ; all shown components connected in series, any order ;	$\mathbf{3}$
$9(\mathrm{~b})$	resistance $=\mathrm{V} / \mathrm{I} ;$ (total resistance) $=2.4 / 0.6(=4 \Omega) ;$ resistance of one lamp $=2(\Omega) ;$	$\mathbf{3}$
$9(\mathrm{c})$	(increase - no mark) (total resistance less) so current increases ;	$\mathbf{1}$

